Tetrahedron 67 (2011) 7042-7049

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Amino acids as building blocks for the synthesis of substituted 1,2,4-triazoles

Mathieu Bibian, Jean Martinez, Jean-Alain Fehrentz*

Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier 1, Université Montpellier 2, 15 Av. Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France

ARTICLE INFO

Article history: Received 12 May 2011 Received in revised form 4 July 2011 Accepted 6 July 2011 Available online 14 July 2011

Keywords: 1,2,4-Triazole Thioamide Building block Heterocycle Lawesson's reagent

ABSTRACT

We report on the synthesis of 1,2,4-triazoles substituted with 2 or 3 amino acid side chains, using silver benzoate as a key reagent for the cyclization step. A complete study of the optical purity retention during the synthetic process leading to these compounds is described. In addition an improved work-up after the addition-cyclization step was also established leading to better yields and metal-free products. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We recently reported on the synthesis of 3,4,5-trisubstituted-1,2,4-triazoles using silver benzoate as a key reagent (Scheme 1).¹ This methodology was useful for the synthesis of optically pure compounds, bearing a chiral moiety in position 3 (Scheme 1), as intermediates for the synthesis of GHS–R1a ligands.² In our ongoing efforts to develop original compounds with potential biological activities, we decided to work on the synthesis of more complex structures, based on the 1,2,4-triazole scaffold substituted with **1**, **2** or even **3** amino acid side chains. We thus attempted to apply the silver benzoate methodology to the synthesis of these derivatives. Because α -amino acids possess an asymmetric carbon atom, the synthesis of such compounds required a complete study of the optical purity retention during the synthetic process.

Scheme 1. Synthesis of 3,4,5-trisubstituted 1,2,4-triazole using silver benzoate.

2. Results and discussion

Using chiral HPLC, we previously demonstrated that the use of silver benzoate allowed us to introduce a chiral moiety on position 3 of the ring, maintaining the optical purity of this center unchanged.¹ The same strategy was used to study the introduction of chiral centers in positions 4 and 5. We synthesized two analogs of 3,4,5-trisubstituted 1,2,4-triazole enantiomers that were then analyzed by chiral HPLC analysis.

Tetrahedror

We first studied epimerization when introducing a chiral substituent in position 5 of the triazole (Scheme 2). For this purpose we produced the corresponding hydrazides starting from optically pure Boc-L-Trp-OH and Boc-D-Trp-OH. We used a recently described pathway for the synthesis of these chiral hydrazides.³ This approach for the synthesis of hydrazides bearing a large variety of chemical groups without epimerization, degradation or deprotection problems, which can occur with classical methods. Hydrazides **4** and **7** were reacted with an achiral thioamide **6** (obtained as previously described via Lawesson's reagent).⁴ Silver benzoatemediated coupling–cyclization afforded triazoles **5** and **8**.

Using chiral HPLC analysis we observed that the synthetic scheme did not induce epimerization when a chiral group was placed in position 5 (ee \geq 98%).

Secondly, we studied epimerization when a chiral group is introduced at position 4 of the triazole ring (Scheme 3). For this purpose we synthesized amides **9** and **12** by coupling picolinic acid with HCl·H-L-Phe-OMe and HCl·H-D-Phe-OMe, respectively. Without further purification these amides were reacted with the Lawesson's reagent to obtain thioamides **10** and **13**. The

^{*} Corresponding author. Tel.: +33 4 67 54 86 51; fax: +33 4 67 54 86 54; e-mail address: jean-alain.fehrentz@univ-montp1.fr (J.-A. Fehrentz).

^{0040-4020/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.07.011

Scheme 2. Synthesis of triazoles 5 and 8. Experimental conditions: (a) EDC·HCI (1.4 equiv), DCM, 2 h, 0 °C then N-aminophthalimide 1 h, 0 °C and overnight rt (b) Aminomethyl polystyrene resin, 1.1 mmol/g, DCM, 24 h, rt (c) 6 (1 equiv), 4 (1.2 equiv), AgOBz (2 equiv), AcOH (3 equiv), DCM, 6 h, rt.

Scheme 3. Synthesis of triazoles 11 and 14. Experimental conditions: (a) BOP (1 equiv), benzylamine (1.1 equiv), DIEA (2 equiv), 30 min, rt (b) Lawesson reagent (0.55 equiv), DME, 2 h, 80 °C (c) phenylacetic hydrazide (2 equiv), AgOBz (2 equiv), AcOH (3 equiv), DCM, 6 h, rt.

coupling-cyclization step with phenylacetic hydrazide in the presence of silver benzoate proceeded very slowly to yield triazoles **11** and **14** in low yields (about 20% after 14 days).

Following isolation by silica gelcompounds **11** and **14** were analyzed by chiral HPLC. No epimerization was detected during the procedure (ee \geq 98%).

From these experiments, we could conclude that the silver benzoate-mediated coupling-cyclization reaction did not induce epimerization in any asymmetric carbon atom present in α position of the triazole ring.

We then attempted to apply our methodology to the synthesis of the 1,2,4-triazole scaffold, substituted with 2 or 3 amino acid side chains. Three types of diastereoisomers could be synthesized: tri-substituted triazoles bearing chiral groups in positions 3 and 5 of the triazole ring, trisubstituted triazoles bearing chiral groups in positions 3 and 4 of the triazole ring, trisubstituted triazoles bearing chiral groups in positions 3, 4 and 5 of the triazole ring.

In the following section, we describe the synthesis of optically pure diastereoisomers bearing chiral groups in positions 3 and 5. Fmoc, Z or Boc *N*-protected amino acids were coupled to various amines to yield amides that were converted into thioamides **15a–q**. The resulting thioamides were allowed to react with different *N*-protected amino acid hydrazides **16a–q** to produce the 1,2,4-

triazoles **17a–q**. Hydrazides **16a–o** were prepared according to Ref. 3. Hydrazide **16p** was synthesized by overnight hydrazinolysis of the corresponding methyl ester with hydrazine monohydrate (6 equiv) in MeOH at room temperature, to avoid the epimerization of acylated amino acids that occurs during activation with EDC. Results are summarized in Table 1.

These results indicate that this method in scope is robust, being compatible with usual peptide synthesis protecting groups (Boc, Cbz, and Fmoc) and amino acids functionalized on their side chain can be introduced. Yields ranged from poor to good and were irrespective both of the electron withdrawing or donating effects and of the nature of side chains. In addition, the protecting groups used in these examples were stable under these reaction conditions.

All compounds described in Table 1 were obtained by silica gel purification of the crudes. Usually a very polar eluent was required for elution of triazole derivatives (5% MeOH/95% Ethyl acetate) and low yields were obtained in some cases (**17f** and **17h**, for example).

For the synthesis of 1,2,4-triazoles trisubstituted by amino acid side chains in positions 3, 4, and 5, the same protocol was followed (Scheme 4).

This reaction yielded, after purification, triazole **20** trisubstituted in position 3, 4, and 5 by amino acid side chains in an

7044

Table 1

15(a-q)

Synthesis of 1,2,4-triazoles bearing amino acid side chains in positions ${\bf 3}$ and ${\bf 5}$ of the ring

17(a-q)

16(a-q)

17	Starting material for R	R′	Starting material for R"	Yield (%)
a	Fmoc-L-Trp	Benzyl	Boc-L-Phe	42
b	Fmoc-L-Trp	p-OMeBenzyl	Boc-L-Phe	77
с	Z-L-Phe	Benzyl	Boc-L-Phe	59
d	Z-L-Phe	p-OMeBenzyl	Boc-L-Phe	49
e	Fmoc-L-Phe	p-ClBenzyl	Boc-L-Phe	51
f	Z-L-Trp	p-ClBenzyl	Boc-L-Phe	32
g	Fmoc-L-Trp	Benzyl	Boc-L-Trp	34
h	Z-L-Trp	p-ClBenzyl	Boc-L-Trp	29
i	Z-L-Phe	p-OMeBenzyl	Boc-L-Lys(Z)	79
j	Boc-L-Nle	Benzyl	Z-L-Asp(OBzl)	76
k	Boc-L-Nle	Benzyl	Z-D-Asp(OBzl)	62
1	Boc-L-Nle	Phenethyl	Fmoc-L-Asp(Ot-Bu)	70
m	Boc-L-Nle	Benzyl	Fmoc-L-Glu(Ot-Bu)	77
n	Boc-L-Trp	Pentyl	Z-L-Asp(OBzl)	33
0	Boc-L-Nle	Benzyl	Fmoc-L-Asp(Ot-Bu)	60
р	Boc-L-Nle	Ethyl 2-acetate	Ac-L-Phe	84
q	Boc-L-Nle	Ethyl 2-acetate	Ac-D-Phe	77

This new procedure was applied to the synthesis of two compounds **17e** and **17f**. A comparison of the yields that were obtained are shown in Table 2.

Table 2 Influence of the treatment on the yields						
Compounds	Yields (%) and silver concentration (ppm) (direct purification by chromatography)	Yields (%)and silver concentration (ppm) (precipitation treatment and chromatography)				
17e	51—ND	79—ND				
17f	32—13.3	59—2.3				

Indeed, the apparent polarity of the products was changed after removal of silver salts. As a comparison, the eluent for elution of the desired compound on silica gel chromatography, in the presence of silver salts, was 5% MeOH in EtOAc, whereas in the absence of silver salts only a 9/1 (v/v) EtOAc/hexane mixture was needed. Yields were clearly improved under this new procedure (Table 2).

As part of our ongoing effort to obtain metal-free final compounds, we synthesized and purified a compound by the two methods described above. Then we measured the silver salts concentration using ICPMS (Inductively Coupled Plasma—Mass Spec-

Scheme 4. Synthesis of a triazole ring starting from amino acids. Experimental conditions: (a) AlaOMe (1.1 equiv), DIEA, BOP (1 equiv), 30 min, rt (b) EDC·HCl (1.4 equiv), DCM, 2 h, 0 °C then *N*-aminophthalimide 1 h at 0 °C and overnight rt (c) Aminomethyl Polystyrene resin, 1.1 mmol/g, DCM, 24 h, rt (d) Lawesson's reagent (0.55 equiv), DME, 2 h, 80 °C (e) **19** (1.0 equiv), **16a** (1.2 equiv), AgOBz (2 equiv), ACOH (3 equiv), DCM, 3 days, rt.

optically pure form as assessed by ¹H NMR. In this case, the reaction proceeded slowly. This example indicated that we are able to produce rigid tripeptide analogs. The biological study of this class of compounds is currently under investigation.

We tried to optimize the treatment and purification of our triazole compounds. To solve problems related to the presence of silver salts, we did not succeed in eliminating them using the different methods described in the literature (aqueous barium sulfide washing,⁵ filtration of the crude on a Celite pad, aqueous NaCl washing). We thus developed a new strategy, employing the formation of a silver salt, that is, insoluble in organic media and compatible with the protecting groups that were used. The simplest example used was silver chloride, which is insoluble in water and organic media. The treatment was optimized to minimize the risk of acid labile group deprotection. Typically after evaporation of dichloromethane, a 50/50 (v/v) solution of DCM and MeOH was added. After vigorous stirring, 2 equiv of HCl (1 N solution in water) were added. Stirring was continued for 2 min and a black powder precipitated. N,N-Diisopropylethylamine (2 equiv) was added to neutralize the remaining HCl. After evaporation of the solvent, the residue was filtered on Celite and eluted with methanol. After solvent evaporation, dilution in ethyl acetate and washing twice with KHSO₄ (1 M solution in water) and NaHCO₃ (saturated water solution) afford the product as a colorless solid or oil. The product was isolated by silica gel in good yield.

troscopy) analysis. As we can see in Table 2, the silver concentrations were very low in both cases. However treatment by silver salts precipitation allowed us to mostly eliminate silver contained in the crude. This result confirmed the superiority of the silver salt precipitation treatment over the direct purification by chromatography on silica gel.

To conclude, in this paper we described the first synthesis of 1,2,4-triazoles bearing at least two amino acid side chains. This synthetic procedure is epimerization free as demonstrated by chiral HPLC analysis. This study allowed the synthesis of compounds that can mimic small peptides. We will now focus on the synthesis of potentially bioactive compound libraries. We aim to prove that the triazole moiety can be a good scaffold to rigidify small peptides structures with possible improvement in their pharmacological properties.

3. Experimental section

3.1. General

Commercially available reagents and solvents were used without further purification. Aminomethyl polystyrene resin was purchased from Iris Biotech GmbH (Marktredwitz, Germany).

LC/MS analyses—samples were prepared in acetonitrile/water (50/50 v/v) mixture, containing 0.1% TFA. All the analyses were

carried out using a Merck Chromolith Speed rod C18, 25×4.6 mm reversed-phase column. A flow rate of 3 mL/min and a gradient of (0-100)% B over 3 min (or over 5 min) were used. Eluent A: water/ 0.1% HCO₂H; eluent B: acetonitrile/0.1% HCO₂H. Nitrogen was used for both the nebulizing and drying gas. The data were obtained in a scan mode ranging from 100 to 1000 *m*/*z* in 0.1 s intervals; 10 scans were summed up to get the final spectrum.

NMR spectroscopy—chemical shifts were reported as δ values (ppm) indirectly referenced to the solvent signal; *J* values are in hertz, and splitting patterns are designated as follows: br s (broad singlet), s (singlet), d (doublet), t (triplet), m (multiplet).

Chiral HPLC—for compounds **11** and **14**, analysis were performed on a Chiracel OD column (normal phase), with a flow rate of 1 ml/min in an isocratic mode 70/30 hexane/isopropanol (v/v) 1%Et₂NH and monitoring at 280 nm. For compounds **5** and **8**, analysis was performed on a Welck 01 column (normal phase), with a flow rate of 1 ml/min in an isocratic mode 70/30 hexane/isopropanol (v/ v) and monitoring at 280 nm.

Flash chromatography—purifications were performed with Kieselguhr Merck G silica gel Si 60 (40–63 $\mu m)$ with hexane/AcOEt as eluent.

Preparation of amides, thioamides, and hydrazides have been previously described in Refs. 1,3.

3.2. General procedure for preparation of compounds 17a-q

Thioamide (1 equiv) and hydrazide (1.2 equiv) were diluted in dichloromethane (10 ml/mmol). Silver benzoate (2 equiv) was then added immediately followed by acetic acid (3 equiv). The mixture was stirred 6 h at room temperature. Distillation of the solvent under reduced pressure gave a black oil, which was diluted in a solution of dichloromethane. A flash chromatography on silica gel, with AcOEt/hexane 5/5 to MeOH 5% in AcOEt as eluent, afforded the triazoles in 32–90% yield.

3.3. General procedure for preparation of 1,2,4-triazoles with silver salts precipitation work-up

Thioamide (1 equiv) and hydrazide (1.2 equiv) were diluted in dichloromethane (10 ml/mmol). Silver benzoate (2 equiv) was then added immediately followed by acetic acid (3 equiv). The mixture was stirred for 6 h at room temperature. Distillation of the solvent under reduced pressure gave a black oil, which was diluted in 50/50 (v/v) solution of DCM and MeOH solution (10 ml/mmol). Under vigorous stirring, 2 equiv of HCl (1 N solution in water) were added. After 2 min of stirring a black powder precipitated. Diisopropylethylamine (2 equiv) was then added. After evaporation under reduced pressure, the reaction mixture was filtered on filter paper and eluted with methanol. After solvent evaporation, dilution in ethyl acetate and washing twice with KHSO₄ (1 M solution in water) and NaHCO₃ (saturated water solution) a colorless compound was obtained. A flash chromatography on silica gel, with AcOEt/ hexane 5/5 to pure AcOEt eluents, afforded the pure triazoles in 60-90% yield.

3.4. Compounds characterization

3.4.1. tert-Butyl 1-(4-(4-methylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-inden-3-yl)ethylcarbamate **5**. Brown powder, 185 mg, 70% and **8** brown powder, 185 mg, 70% ¹H NMR (300 MHz, DMSO-d₆, 303 K): δ (ppm) 1.22 (s, 9H, CH₃ Boc), 2.23 (3H, s, CH₃ *p*-methylbenzyl), 2.67–2.69 (4H, m, CH₂CH₂ phenethyl), 3.22–3.43 (m, 2H, CH₂ β tryptophan), 4.91 (dd, 1H, 9 and 14 Hz, CH α tryptophan), 5.06 (s, 2H, CH₂ *p*-methylbenzyl), 6.72 (d, 7 Hz, NH Boc and H₅ tryptophan), 6.89 (t, 1H, H₆ tryptophan), 6.99–7.33 (m, 11H, CH aromatics phenethyl and *p*-methylbenzyl, and H₂H₇ tryptophan), 7.55 (d, 1H, 9 Hz, H₄ tryptophan), 10.72 (s, 1H, NH indole). ¹³C NMR (75 MHz, DMSO- d_6 , 303 K): δ (ppm) 20.5 (CH₃ *p*-methylbenzyl), 26.2 (CH₂ β phenethyl), 28.0 (CH₃ Boc), 28.9 (CH₂ α phenethyl), 32.4 (CH₂ β tryptophan), 45.0 (CH₂ *p*-methylbenzyl), 45.3 (CH α tryptophan), 78.3 (C quat. Boc), 110.2 (C₃ tryptophan), 111.2 (C₇ tryptophan), 118.1 (C₄ tryptophan), 118.2 (C₅ tryptophan), 120.7 (C₆ tryptophan), 123.8 (C₂ tryptophan), 125.9 and 126.0 (C₄ phenethyl and *p*-methylbenzyl), 137.1 (C₉ tryptophan), 128.2 and 129.1 (CH aromatics and *p*-methylbenzyl), 132.9 (C₄ *p*-methylbenzyl), 135.9 and 136.6 (C₁ *p*-methylbenzyl) and C₈ tryptophan), 140.6 (CO Boc), 153.8 and 155.1 (C₃C₅ triazole). MS (ES), *m*/*z*: 536.3 [M+H]⁺.

3.4.2. (S)-Methyl 3-phenyl-2-(pyridine-2-carbothioamido)propanoa te**10**. Yellow oil, 2.83 g, 94%.

3.4.3. (R)-Methyl 3-phenyl-2-(pyridine-2-carbothioamido)propanoate **13**. Yellow oil, 2.52 g, 84% ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 3.38 (dd, 1H, 8 and 14 Hz, CH₂ β phenylalanine), 3.40 (dd, 1H, 6 and 14 Hz, CH₂ β phenylalanine), 3.68 (s, 3H, OMe), 5.44 (m, 1H, CH α phenylalanine), 7.20–7.29 (m, 5H, CH aromatics phenylalanine), 7.63 (ddd, 1H, 1 and 5 and 8 Hz, H₅ pyridine), 8.00 (td, 1H, 2 and 8 Hz, H₃ pyridine), 8.44 (dt, 1H, 8 Hz, H4 pyridine), 8.62 (m, 1H, H₆ pyridine), 10.83 (d, 1H, 8 Hz, NH thioamide). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 36.1 (CH₂ β phenylalanine), 52.8 (OMe), 59.4 (CH α phenylalanine), 125.0 (C₃ pyridine), 127.3 and 127.3 (C₄ phenylalanine and C₅ pyridine), 128.9 (C₂ and C₆ phenylalanine), 129.5 (C₃ and C₅ phenylalanine), 137.1 (C₁ phenylalanine), 138.3 (C₄ pyridine), 148.1 (C₆ pyridine), 151.3 (C₂ pyridine), 170.7 (CO carbonyl), 191.9 (CS thioamide). MS (ES), *m/z*: 301.1 [M+H]⁺.

3.4.4. (S)-Methyl 2-(3-benzyl-5-(pyridin-2-yl)-4H-1,2,4-triazol-4-yl)-3-phenylpropanoate **11**. Colorless oil, 80 mg (20%).

3.4.5. (R)-Methyl 2-(3-benzyl-5-(pyridin-2-yl)-4H-1,2,4-triazol-4*vl*)-3-*phenylpropanoate* **14**. Colorless oil, 82 mg (20%) ¹H NMR (400 MHz, DMSO- d_6 , 303 K): δ (ppm) 3.27 (dd, 1H, J=10 and 14 Hz, $CH_2\beta$ phenylalanine), 3.49 (s, 3H, OMe), 3.60 (br s, 1H, CH_2 benzyl), 3.64 (dd, 1H, J=4 and 14 Hz, $CH_2\beta$ phenylalanine), 5.68 (m, 1H, $CH\alpha$ phenylalanine), 6.84 (d, 2H, J=8Hz, H₂H₆ benzyl), 7.02 (d, 2H, J=7 Hz, H_2H_6 phenylalanine), 7.14–7.28 (m, 6H, $H_3H_4H_5$ benzyl and $H_3H_4H_5$ phenylalanine), 7.50 (ddd, 1H, J=1 and 5 and 7 Hz, H₅ pyridine), 8.00 (td, 1H, J=2 and 8 Hz, H₄ pyridine), 8.20 (d, 1H, J=8 Hz, H₃ pyridine), 8.58 (br d, 1H, J=5 Hz, H₆ pyridine). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 30.5 (CH₂ benzyl), 37.2 (CH₂β phenylalanine), 52.7 (OMe), 59.8 (CHa phenylalanine), 123.0 (C₃ pyridine), 124.9 (C₅ pyridine), 127.1 and 127.4 (C₄ phenylalanine and C₄ benzyl), 128.8–129.5 (C₂C₃C₅C₆ phenylalanine and C₂C₃C₅C₆ benzyl), 136.0 (C₁ benzyl), 136.9 (C₄ pyridine), 138.2 (C₁ phenylalanine), 147.3 (C₃ or C₅ triazole), 148.4 (C₆ pyridine), 151.6 (C₂ pyridine), 156.2 (C₃ or C₅ triazole), 169.0 (CO ester). MS (ES), *m*/*z*: 399.0 [M+H]⁺.

3.4.6. (9H-Fluoren-9-yl)methyl (S)-1-(benzylthiocarbamoyl)-2-(1H-indol-3-yl)ethylcarbamate **15a** and **15g**. Yellow oil, 1.46 g, 60% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 3.11 (dd, 1H, 9 and 14 Hz, CH₂ β tryptophan), 3.26 (dd, 1H, 5 and 14 Hz, CH₂ β tryptophan), 4.20 (m, 3H, CH–CH₂ Fmoc), 4.74 (m, 1H, CH α tryptophan), 4.80 (d, 2H, 5Hz, CH₂ benzyl), 7.00 (m, 1H, H₅ tryptophan), 7.08 (t, 1H, 8 Hz, H₆ tryptophan), 7.18 (d, 2H, 7 Hz, H₂ tryptophan and H₄ benzyl), 7.23–7.30 (m, 6H, H₂H₃H₅H₆ benzyl and H₂H₇ Fmoc), 7.35–7.41 (m, 3H, H₇ tryptophan and H₃H₆ Fmoc), 7.59 (d, 1H, 8 Hz, H₄ tryptophan), 7.64–7.73 (m, 3H, H₁H₈ Fmoc and NH Fmoc), 7.87 (d, 2H, 7Hz, H₄ H₅ Fmoc), 10.48 (br s, 1H, NH thioamide), 10.85 (s, 1H, NH indole tryptophan), 46.6 (CH Fmoc), 48.3 (CH₂ benzyl), 61.9 (CH α tryptophan), 118.2 (C₄ tryptophan), 118.5 (C₅ tryptophan), 120.0

 $(C_4C_5 \text{ Fmoc})$, 120.8 (C_6 tryptophan), 124.1 (C_2 tryptophan), 125.3 (C_1 C_8 Fmoc), 127.0 (C_4 benzyl and C_2 C_7 Fmoc), 127.2 (C_9 tryptophan), 127.4 (C_2 C_6 benzyl), 127.7 (C_3 C_5 benzyl), 128.2 (C_3 C_6 Fmoc), 136.1 (C_1 benzyl), 136.9 (C_8 tryptophan), 140.6 (C_4 a/b Fmoc), 143.8 (C_8 a/b Fmoc), 155.5 (CO Fmoc), 204.8 (CS thioamide). MS (ES), *m/z*: 532.0 [M+H]⁺.

3.4.7. (9H-Fluoren-9-vl)methvl (S)-1-(4-methoxybenzylthiocar *bamoyl*)-2-(1H-indol-3-yl)*ethylcarbamate* **15b**. Yellow oil, ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 3.12 (dd, 1H, 9 and 14 Hz, $CH_2\beta$ tryptophan), 3.21 (dd, 1H, 5 and 14 Hz, $CH_2\beta$ tryptophan), 3.71 (s, 3H, O-CH₃), 4.18 (m, 3H, CHCH₂-Fmoc), 4.72 (m, 3H, CHa tryptophan and CH₂ 4-methoxybenzyl), 6.82 (d, 2H, 8 Hz, H₃ H₅ 4methoxybenzyl), 7.01 (t, 1H, 8 Hz, H₅ tryptophan), 7.05–7.13 (m, 3H, H₆ tryptophan and H₂H₆ 4-methoxybenzyl), 7.24 (d, 1H, 2Hz, H₂ tryptophan), 7.29 (m, 2H, H₂H₇ Fmoc), 7.32–7.43 (m, 2H, H₃H₆ Fmoc and H₇ tryptophan), 7.56 (d, 1H, 8 Hz, H₄ tryptophan),7.70 (m, 3H, H₁H₈ Fmoc and NH Fmoc), 7.87 (d, 2H, 8Hz, H₄H₅ Fmoc), 10.39 (br s, 1H, NH thioamide), 10.85 (s, 1H, NH indole tryptophan). ¹³C NMR (75 MHz, DMSO-*d*₆, 303 K): δ (ppm) 30.8 (CH₂β tryptophan), 46.6 (CH Fmoc), 47.8 (CH₂ 4-methoxybenzyl), 55.0 (O-CH₃), 61.8 (CHa tryptophan), 65.7 (CH₂ Fmoc), 109.9 (C₃ tryptophan), 111.3 (C₇ tryptophan), 113.6 (C₃ C₅ 4-methoxybenzyl), 118.2 (C₄ tryptophan), 118.5 (C₅ tryptophan), 120.0 (C₄C₅ Fmoc), 120.8 (C₆ tryptophan), 124.1 (C2 tryptophan), 125.3 (C1C8 Fmoc), 127.0 (C2C7 Fmoc), 127.3 (C₉ tryptophan), 127.6 (C₂C₆ 4-methoxybenzyl or C₃C₆ Fmoc), 128.9 $(C_2C_6 4$ -methoxybenzyl or C_2C_6 Fmoc), 128.7 (C_1 4-methoxybenzyl), 136.1 (C₈ tryptophan), 140.6 (C₄ a/b Fmoc), 143.6 (C₈ a/b Fmoc), 155.4 (CO Fmoc), 158.4 (C₄ 4-methoxybenzyl), 204.3 (CS thioamide). MS (ES), *m*/*z*: 562.1 [M+H]⁺.

3.4.8. Benzyl (S)-1-(benzylthiocarbamoyl)-2-phenylethylcarbamate **15c.** Yellow oil, 1.25 g, 65% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 2.92 (dd, 2H, 9 and 14 Hz, CH₂ β phenylalanine), 3.04 (dd, 2H, 5 and 14 Hz, CH₂ β phenylalanine), 4.71 (m, 1H, CH α phenylalanine), 4.77 (d, 2H, 5 Hz, CH₂ benzyl), 4.98 (s, 2H, CH₂ Z), 7.20 (t, 3H, 7 Hz, H₄ benzyl and H₄ Z and H₄ phénylalanine), 7.27 (m, 12H, H₂ H₃ H₅ H₆ benzyl and H₂ H₃ H₅ H₆ Z and H₂ H₃ H₅ H₆ phenylalanine), 7.56 (d, 1H, 8Hz, NH Z), 10.50 (t, 1H, 7 Hz, NH thioamide). ¹³C NMR (75 MHz, DMSO- d_6 , 303 K): δ (ppm) 40.4 (CH₂ β phenylalanine), 48.2 (CH₂ benzyl), 62.2 (CH α phenylalanine), 65.2 (CH₂ Z), 126.3–129.3 (C₂ C₃ C₄ C₅ C₆ benzyl, C₂ C₃ C₄ C₅ C₆ Z, C₂ C₃ C₄ C₅ C₆ phenylalanine), 136.8 and 136.9 and 137.6 (C₁ benzyl and C₁ Z and C₁ phenylalanine), 155.5 (CO Z), 204.2 (CS thioamide) MS (ES), *m/z*: 405.0 [M+H]⁺.

3.4.9. Benzyl (S)-1-(4-methoxybenzylthiocarbamoyl)-2-phenyle thylcarbamate 15d and 15i. Yellow oil, 1.44 g, 90% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 2.90 (dd, 1H, 9 and 14 Hz, CH₂ β phenylalanine), 3.02 (dd, 1H, 5 and 14 Hz, $CH_2\beta$ phenylalanine), 3.74 (s, 3H, O-CH₃), 4.67 (m, 3H, CHa phenylalanine and CH₂ 4methoxybenzyl), 4.87 (s, 2H, CH2 Z), 6.87 (d, 2H, 8 Hz, H3 H5 4methoxybenzyl), 7.22 (d, 2H, 8 Hz, H₂ H₆ 4-methoxybenzyl), 7.22-7.30 (m, 10H, H₂ H₃ H₄ H₅ H₆ Z and H₂ H₃ H₄ H₅ H₆ phenylalanine), 7.53 (d, 1H, 8 Hz, NH Z), 10.42 (br s, 1H, NH thioamide). ¹³C NMR (75 MHz, DMSO- d_6 , 303 K): δ (ppm) 38.3 (CH₂ β phenylalanine), 47.8 (CH₂ 4-methoxybenzyl), 55.0 (O-CH₃), 62.2 (CHa phenylalanine), 65.2 (CH₂ Z), 113.7 (C₃ C₅ 4-methoxybenzyl), 126.3–129.3 (C₂ C₃ C₄ C₅ C₆ Z and C₂ C₃ C₄ C₅ C₆ phenylalanine and C₂ C₆ 4-methoxybenzyl), 132.3 (C₁ p-méthoxybenzyl), 136.9 (C₁ Z), 137.7 (C₁ phenylalanine), 155.5 (CO Z), 158.5 (C₄ 4-methoxybenzyl), 203.7 (CS thioamide). MS (ES), *m*/*z*: 435.0 [M+H].

3.4.10. (9H-Fluoren-9-yl)methyl (S)-1-(4-chlorobenzylthiocarba moyl)-2-phenylethylcarbamate **15e**. White solid, 1.79 g, 68% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 2.97 (dd, 1H, 9 and 14 Hz, CH₂ β phenylalanine), 3.05 (dd, 1H, 5 and 14 Hz, CH₂ β phenylalanine),

4.17 (m, 3H, CH₂CH Fmoc), 4.70 (m, 1H, CHα phenylalanine), 4.76 (d, 2H, 5Hz, CH₂ 4-chlorobenzyl), 7.18 (d, 2H, 8Hz, H₂ H₆ 4chlorobenzyl), 7.27 (d, 2H, 7Hz, H₃ H₅ 4-chlorobenzyl), 7.31–7.32 (m, 7H, H₂ H₇ Fmoc and H₂ H₃ H₄ H₅ H₆ phenylalanine), 7.41 (t, 2H, 7 Hz, H₃ H₆ Fmoc), 7.67 (d, 2H, 8 Hz, H₁ H₈ Fmoc), 7.73 (d, 1H, 8 Hz, NH Fmoc), 7.87 (d, 2H, 8 Hz, H₄ H₅ Fmoc), 10.53 (t, 1H, 5 Hz, NH thioamide). ¹³C NMR (75 MHz, DMSO-*d*₆, 303 K): δ (ppm) 40.3 (CH₂ β phenylalanine), 46.5 (CH Fmoc), 47.4 (CH₂ 4-chlorobenzyl), 62.3 (CHα phenylalanine), 65.7 (CH₂ Fmoc), 120.0 (C₄C₅ Fmoc), 125.3 (C₁C₈ Fmoc), 126.3 (C₄ phenylalanine), 127.0 (C₂C₇ Fmoc), 127.6 (C₃C₆ Fmoc), 128.0 and 128.1 (C₂C₃C₅C₆ 4-chlorobenzyl), 129.3 (CH Ar phenylalanine), 135.8 (C₁ phenylalanine), 137.6 (C₁ 4-chlorobenzyl), 140.6 (C₄ a/b Fmoc), 143.7 (C₈ a/b Fmoc), 155.5 (CO Fmoc), 204.5 (CS thioamide). MS (ES), *m/z*: 527.0 [M+H]⁺.

3.4.11. Benzyl (S)-1-(4-chlorobenzylthiocarbamoyl)-2-(1H-indol-3yl)ethylcarbamate 15f and 15h. Yellow 3.07 g, 100% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 3.07 (dd, 1H, 9 and 14 Hz, $CH_2\beta$ tryptophan), 3.24 (dd, 1H, 5 and 14 Hz, $CH_2\beta$ tryptophan), 4.74 (m, 3H, CH₂ 4-chlorobenzyl and CHa tryptophan), 4.95 (br s, 2H, CH₂ Z), 7.00 (t, 2H, 7 Hz, H₅ tryptophan), 7.00 (d, 1H, 7Hz, NH Z), 7.11 (t, 1H, 8 Hz, H₆ tryptophan), 7.12 (d, 2H, 8 Hz, H₂ H₆ 4-chlorobenzyl), 7.20 (s, 1H, H₂ tryptophan), 7.31 (d, 5H, 6 Hz, H₂ H₃ H₄ H₅ H₆ Z), 7.37 (d, 1H, 8 Hz, H7 tryptophan), 7.36 (d, 2H, 8 Hz, H3 H5 4chlorobenzyl), 7.66 (d, 1H, 8 Hz, H₄ tryptophan), 10.47 (t, 1H, 5 Hz, NH thioamide), 10.84 (s, 1H, NH indole tryptophan). ¹³C NMR (75 MHz, DMSO-*d*₆, 303 K): δ (ppm) 30.8 (CH₂β tryptophan), 47.4 (CH₂ 4-chlorobenzyl), 61.9 (CHα tryptophan), 65.3 (CH₂ Z), 109.7 (C₃ tryptophan), 111.3 (C₇ tryptophan), 118.2 (C₄ tryptophan), 118.5 (C₅ tryptophan), 120.9 (C₆ tryptophan), 124.1 (C₂ tryptophan), 127.2 (C₉ tryptophan), 127.4 (C₄ Z), 128.1 (C₂ C₃ C₅ C₆ Z), 128.2 (C₂ C₆ 4chlorobenzyl), 129.2 (C3 C5 4-chlorobenzyl), 131.4 (C4 4chlorobenzyl), 136.1 (C₈ tryptophan and C₁ Z), 136.9 (C₁ 4chlorobenzyl), 155.5 (CO Z), 204.9 (CS thioamide). MS (ES), *m/z*: 478.1 [M+H].

3.4.12. tert-Butyl (S)-1-(5-((S)-1-Fmoc-amino-2-(1H-indol-3-yl)eth yl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-phenylethylcarbamate **17a**. Brown oil, 180 mg (42%) ¹H NMR (300 MHz, DMSO-*d*₆, 303 K): δ (ppm) 1.08 (s, 9H, CH₃ Boc), 3.15–3.41 (m, 4H, CH₂ β phenylalanine and tryptophan), 3.93-4.13 (m, 3H, CH₂CH Fmoc), 4.81-4.95 (m, 2H, CH α phenylalanine and tryptophan), 5.27 (dd, J=17 Hz, CH₂ benzylamine), 6.88 (m, 4H, H₄ benzylamine and H₄ phenylalanine and H₅ tryptophan and NH Boc), 7.01 (m, 2H, H₂H₆ tryptophan), 7.12-7.21 (m, 8H, H₂H₃H₅H₆ benzylamine and H₂H₃H₅H₆ phenylalanine), 7.25–7.31 (m, 3H, H₇ tryptophan and H₂H₇ Fmoc), 7.36–7.43 (dd, 2H, H₃H₆ Fmoc), 7.49 (d, 1H, J=9Hz, H₄ tryptophan), 7.58 (t, 2H, J=8 Hz, H₁H₈ Fmoc), 7.86 (d, 2H, J=7 Hz, H₄H₅ Fmoc), 8.17 (d, 2H, J=8 Hz, NH Fmoc), 10.77 (s, 1H, NH tryptophan). ¹³C NMR (75 MHz, DMSO- d_6 , 303 K): δ (ppm) 27.8 (CH₃ Boc), 38.0 (CH₂ β tryptophan and phenylalanine), 45.8 (CH₂ benzylamine), 46.4 (CH α phenylalanine and tryptophan), 46.6 (CHCH₂ Fmoc), 65.7 (CHCH₂ Fmoc), 78.0 (C quat. Boc), 109.6 (C₃ tryptophan), 111.2 (C₇ tryptophan), 117.8 (C₄ tryptophan), 118.2 (C₅ tryptophan), 120.0 (C₄C₅ Fmoc), 120.7 (C₆ tryptophan), 125.2 (C₂ tryptophan), 125.7 (C₁C₈ Fmoc), 126.1 (C₄ phenylalanine), 126.9 (C₉ tryptophan and C₄ benzylamine), 126.9 (C₂C₇ Fmoc), 127.5 (C₃C₆ Fmoc), 127.9 (C₂C₆ phenylalanine and benzylamine), 128.5–129.3 (C₃C₅ phenylalanine and benzylamine), 135.7 (C₁ phenylalanine), 135.9 (C₁ benzylamine), 137.6 (C₈ tryptophan), 140.6 (C_{4a/b} Fmoc), 143.6 (C_{8a/b} Fmoc), 154.8 and 155.2 (CO Fmoc and Boc), 155.7 and 156.1 (C_3 and C_5 triazole). HRMS (ESI) calcd for C₄₇H₄₇N₆O₄, 759.3659; found 759.3652.

3.4.13. tert-Butyl (S)-1-(5-((S)-1-Fmoc-amino-2-(1H-indol-3-yl)ethy l)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-phenylethylcarbam ate **17b**. Beige oil, 534 mg, 77% ¹H NMR (300 MHz, DMSO- d_6 ,

303 K): δ (ppm) 1.12 (s, 9H, CH₃ Boc), 3.18 and 3.36 (m, 4H, CH₂ β phenylalanine and tryptophan), 3.64 (s, 3H, 4-methoxybenzyl), 4.05 (m, 3H, CHCH2-Fmoc), 4.90 (m, 2H, CHa phenylalanine and tryptophan), 5.17 (dd, 2H, 8 and 17Hz, CH₂ benzyl), 6.72 (d, 2H, 8Hz, H₃H₅ 4-methoxybenzyl), 6.84 (m, 3H, H₂H₆ 4-methoxybenzyl and NH Boc), 7.02 (m, 3H, H₂ H₅ H₆ tryptophan), 7.11–7.23 (m, 5H, CH aromatics phenylalanine), 7.29 (t, 3H, 8Hz, H₂H₇ Fmoc and H₇ tryptophan), 7.40 (m, 2H, H₃H₆ Fmoc), 7.46 (d, 1H, 9Hz, H₄ tryptophan), 7.60 (t, 2H, 8 Hz, H1 H8 Fmoc), 7.86 (d, 2H, 7Hz, H4H5 Fmoc), 8.19 (d,1H, 8Hz, NH Fmoc), 10.78 (s, 1H, NH indole tryptophan). ¹³C NMR (75 MHz, DMSO- d_6 , 303 K): δ (ppm) 27.8 (CH₃ Boc), 38.2 (CH₂ β phenylalanine and tryptophan), 45.3 (CH₂ 4-methoxybenzyl), 46.5 (CHα tryptophan and phenylalanine), 46.7 (CHCH₂ Fmoc), 55.0 (4methoxybenzyl), 65.8 (CH₂CHFmoc), 78.0 (C quat Boc), 109.7 (C₃ tryptophan), 111.2 (C₇ tryptophan), 113.9 (C₃C₅ 4-methoxybenzyl), 117.9 (C₄ tryptophan), 118.2 (C₅ tryptophan), 120.0 (C₄C₅ Fmoc), 120.8 (C₆ tryptophan), 125.3 (C₁C₈ Fmoc), 126.1 (C₂ tryptophan), 127.0 (C₄ phenylalanine), 127.1 (C₂C₇ Fmoc), 127.6 (C₃C₆ Fmoc), 127.9 (C₂C₆ phenylalanine and 4-methoxybenzyl), 129.3 (C₃C₅ phenylalanine), 136.0 (C₁ 4-methoxybenzyl and C₈ tryptophan), 137.6 (C1 phenylalanine), 140.6 (C4 a/b Fmoc), 143.6 (C8a/b Fmoc), 155.2 (C₄ 4-methoxybenzyl), 155.7 (CO Boc or Fmoc), 156.0 (CO Boc or Fmoc), 158.6 (C3 and C5 triazole). HRMS (ESI) calcd for C₄₈H₄₉N₆O₅, 789.3764; found 789.3763.

3.4.14. tert-Butyl (S)-1-(5-((S)-1-Cbz-amino-2-(phenyl)ethyl)-4*benzyl-4H-1,2,4-triazol-3-yl)-2-phenylethylcarbamate* 17c. White powder, 367 mg, 59% ¹H NMR (300 MHz, DMSO- d_{6} , 303 K): δ (ppm) 1.13 (s, 9H, CH₃ Boc), 3.07 (m, 4H, CH₂β phenylalanine), 4.72–4.90 (m, 4H, CH₂ benzylamine and CH₂ Z), 5.2 (dd, 2H, 17Hz and 20 Hz CHa phenylalanine), 6.94–7.33 (m, 20H, CH aromatics), 7.54 (d, 1H, 9Hz, NH Boc), 8.05 (d, 1H, 9Hz, NH Z) ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 27.8 (CH₃ Boc), 38.3 (CH₂ β phenylalanine), 45.7 (CH₂ benzylamine), 46.6 (CHa phenylalanine), 47.3 (CHa phenylalanine), 65.3 (CH₂ Z), 78.0 (C quat. Boc), 126.0 and 126.1 and 126.3 (C_4 benzylamine and C_4 phenylalanine and C_4 Z), 127.3–129.2 (C₂C₃C₅C₆ phenylalanine and Z and benzylamine), 135.7 and 136.7 and 137.4 and 137.6 (C_1 phenylalanine and C_1 benzyl and C_1Z), 154.9 (CO Boc or Z), 155.4 (CO Boc or Z), 155.6 (C₃ and C₅ triazole). HRMS (ESI) calcd for C₃₈H₄₂N₅O₄, 632,3237; found 632,3224.

3.4.15. tert-Butyl (S)-1-(5-((S)-1-Cbz-amino-2-(phenyl)ethyl)-4-(4methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-phenylethylcarbamate **17d**. White powder, 374 mg, 49% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 1.17 (s, 9H, CH₃ Boc), 3.09 (m, 4H, CH₂ β phenylalanine), 3.72 (s, 3H, O-Me), 4.83 (m, 4H, CH₂ 4-methoxybenzyl and CH₂ Z), 5.11 (dd, 2H, CHα phenylalanine), 6.82 (d, 2H, 9 Hz, H₂H₆ 4methoxybenzyl), 6.90 (d, 2H, 8 Hz, H₃H₅ 4-methoxybenzyl), 7.00-7.31 (m, 15H, CH Ar. Z and phenylalanine), 7.55 (d, 1H, 9 Hz, NH Boc), 8.06 (d, 1H, 9 Hz, NH Z). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 27.9 (CH₃Boc), 38.2 and 38.3 (CH₂ β phenylalanine), 45.4 (CH₂ 4-methoxybenzyl), 46.6 (CH₂β phenylalanine), 47.3 (CHα phenylalanine), 55.1 (CH₃ 4-methoxybenzyl), 65.4 (CH₂ Z), 78.1 (C quat. Boc), 114.0 (C₃ C₅ 4-methoxybenzyl), 126.2–129.2 (C₂ C₃ C₄ C₅ C_6 phenylalanine and $C_2 C_3 C_4 C_5 C_6 Z$ and $C_2 C_6 4$ -methoxybenzyl), 136.7 and 137.3 and 137.5 (C_1 Z and phenylalanine and 4methoxybenzyl), 154.9 (C=O Boc or Z), 155.4 (C₄ 4methoxybenzyl), 155.6 (C=O Boc or Z), 158.6 (C_3 and C_5 triazole). HRMS (ESI) calcd for C₃₉H₄₄N₅O₅.: 662,3342; found 662,3334.

3.4.16. tert-Butyl (S)-1-(5-((S)-1-Fmoc-amino-2-(phenyl)ethyl)-4-(4-chlorobenzyl)-4H-1,2,4-triazol-3-yl)-2-phenylethylcarbamate **17e.** White powder, 290 mg, 51%, ¹H NMR (300 MHz, DMSO-d₆, 303 K): δ (ppm) 1.14 (s, 9H, CH₃ Boc), 3.19 (m, 4H, CH₂ β phenylalanine), 3.89 (t, 1H, 8 Hz, CH Fmoc), 4.02 (t, 1H, 7 Hz, CH₂ Fmoc), 4.09 (t, 1H, 8 Hz, CH₂ Fmoc), 4.83 (m, 2H, CH α phenylalanine), 5.16 (d, 1H, 17 Hz, CH₂ 4-chlorobenzyl), 5.24 (d, 1H, 17 Hz, CH₂ 4-chlorobenzyl), 6.84 (d, 2H, 9 Hz, H₂H₆ 4-chlorobenzyl), 7.05 (d, 2H, 7 Hz, H₂H₆ phenylalanine), 7.10 (d, 2H, 7 Hz, H₂H₆ phenylalanine), 7.17 (m, 8H, H₃ H₄ H₅ phenylalanine and H₃ H₅ 4-chlorobenzyl), 7.30 (dd, 2H, 7 and 9 Hz, H₂ H₇ Fmoc), 7.42 (d, 2H, 7 and 8 Hz, H₃ H₆ Fmoc), 7.56 (d, 1H, 9 Hz, NH Fmoc), 7.60 (dd, 2H, 9 Hz, H₁ H₈ Fmoc), 7.89 (dd, 2H, 8 Hz, H₄ H₅ Fmoc), 8.21 (d, 1H, 8 Hz, NH Boc). ¹³C NMR (75 MHz, DMSO- d_{6} , 303 K): δ (ppm) 28.4 (CH₃ Boc), 38.6 (CH₂ β phenylalanine), 38.8 (CH₂β phenylalanine), 45.6 (CH₂ 4-chlorobenzyl), 46.9 (CHa phenylalanine), 47.1 (CH Fmoc), 47.8 (CHa phenylalanine), 66.3 (CH₂ Fmoc), 78.6 (C quat. Boc), 120.6 (C₄ C₅ Fmoc), 125.7 and 125.8 (C1 C8 Fmoc), 126.7 and 126 .8 (C2 C7 Fmoc), 127.4 and 127.5 (C₄ phenylalanine), 128.1 (C₃ C₅ phenylalanine), 128.4 and 128.5 and 128.5 and 128.8 (C₂ C₃ C₅ C₆ 4-chlorobenzyl), 129.7 and 129.7 (C₂ C₆ phenylalanine), 132.4 (C₄ 4-chlorobenzyl), 135.4 (C₁ 4chlorobenzyl), 138.0 and 138.1 (C_1 phenylalanine), 141.1 ($C_{4a/}$ b Fmoc), 144.0 and 144.1 (C8a/b Fmoc), 155.3 (CO Fmoc), 155.9 and 155.8 (C₃ and C₅ triazole), 156.0 (CO Boc). HRMS (ESI) calcd for C45H45ClN5O4, 734.3160; found 734.3161.

3.4.17. tert-Butyl (S)-1-(5-((S)-1-Cbz-amino-2-(1H-indol-3-yl)ethyl)-4-(4-chlorobenzyl)-4H-1,2,4-triazol-3-yl)-2-phenylethylcarbamate **17f.** White powder, 237 mg, 32%, ¹H NMR (300 MHz, DMSO-*d*₆, 303 K): δ (ppm) 1.07 (s, 9H, CH₃ Boc), 3.18–3.31 (m, 4H, CH₂ β phenylalanine and $CH_2\beta$ tryptophan), 4.76–4.90 (m, 4H, CH α phenylalanine and CHa tryptophan and CH₂ 4-chlorobenzyl), 5.25 (s, 2H, CH₂ Z), 6.83 (m, 2H, 7 and 8 Hz, H_4 and H_5 tryptophan), 6.95 (d, 1H, 7 Hz, NH Boc), 7.03 (m, 2H, H₂H₆ trytophane), 7.14–7.32 (m, 13H, CH Ar phenylalanine and Z, H₂H₃H₅H₆ 4-chlorobenzyl), 7.46 (d, 1H, 9Hz, H₇ tryptophan), 8.04 (d, 2H, 8 Hz, NH Z), 10.78 (s, 1H, NH indole). ¹³C NMR (75 MHz, DMSO-*d*₆, 303 K): δ (ppm) 27.7 (CH₃ Boc), 37.6 and 38.0 (CH₂β tryptophan and phenylalanine), 45.1 (CH₂ 4chlorobenzyl), 46.4 and 46.6 (CHa tryptophan and phenylalanine), 65.4 (CH₂ Z), 78.0 (C quat. Boc), 109.5 (C₃ tryptophan), 111.2 (C₇ tryptophan), 117.8 (C₄ tryptophan), 118.2 (C₅ tryptophan), 120.8 (C₆ tryptophan), 126.2 (C₂ tryptophan), 126.9 (C₉ tryptophan), 127.4–128.3 (CH Ar. Z and phenylalanine and C₂C₃C₅C₆ 4chlorobenzyl), 132.0 (C₄ 4-chlorobenzyl), 134.7 and 135.9 and 137.6 (C₁ phenylalanine and C₁ 4-chlorobenzyl and C₁ Z), 136.6 (C₈ tryptophan), 154.7 and 155.2 (CO Z and Boc), 155.7 (C₃ and C₅ triazole). HRMS (ESI) calcd for C₄₀H₄₂ClN₆O₄, 705.2956; found 705.2955.

3.4.18. tert-Butyl(S)-1-(5-((S)-1-Fmoc-amino-2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethylcarbamate **17g.** Beige oil, 153 mg, 34%, ¹H NMR (300 MHz, DMSO-d₆, 303 K): δ (ppm) 1.22 (s, 9H, CH₃ Boc), 3.27 (m, 4H, CH₂ β tryptophan), 4.11 (m, 3H, CH₂CH Fmoc), 4.79 (m, 2H, CH α tryptophan), 5.26 (s, 2H, CH₂ benzyl), 6.64 (d, 2H, H₂H₆ benzyl), 6.83 (m, 2H, H₅ tryptophan), 6.98–7.15 (m, 9H, H₂ H₄ H₆ tryptophan and H₃ H₄ H₅ benzyl), 7.28 (m, 4H, H₂H₇ Fmoc and H₇ tryptophan), 7.40 (dd, 2H, 7 and 11 Hz, H₃H₆ Fmoc), 7.59 (m, 3H, H₁ H₈ Fmoc and NH Fmoc), 7.86 (d, 2H, 7 Hz, H₄ H₅ Fmoc), 8.20 (d, 1H, 8 Hz, NH Boc), 10.76 (s, 2H, NH indole). HRMS (ESI) calcd for C₄₉H₄₈N₇O₄, 798.3768; found 798.3775.

3.4.19. tert-Butyl (*S*)-1-(5-((*S*)-1-Cbz-amino-2-(1H-indol-3-yl)ethyl) -4-(4-chlorobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethylcarbamate **17h**. Beige oil, 179 mg, 29%, ¹H NMR (300 MHz, DMSOd₆, 303 K): δ (ppm) 1.24 (s, 9H, CH₃ Boc), 3.28 (m, 4H, CH₂ β tryptophan), 4.77 (m, 2H, CH α tryptophan), 4.82 (m, 1H, CH₂ Z), 4.89 (m, 1H, CH₂ Z), 5.26 (m, 2H, CH₂ 4-chlorobenzyl), 6.56 (d, 2H, 8 Hz, H₂H₆ 4-chlorobenzyl), 6.86 (m, 2H, H₅ tryptophan), 7.02–7.10 (m, 6H, H₂ H₄ H₆ tryptophan), 7.16 (d, 1H, 8 Hz, H₄ Z), 7.19 (d, 2H, 6 Hz, H₃ H₅ 4-chlorobenzyl), 7.30–7.35 (m, 5H, H₇ tryptophan and H₂ H₃ H₅ H₆ Z), 7.61 (d, 1H, 9 Hz, NH Z), 8.11 (d, 1H, 8 Hz, NH Boc), 10.80 (s, 2H, NH indole). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 28.5 (CH₃ Boc), 29.2 (CH₂ β tryptophan), 45.4 (CH₂ 4-chlorobenzyl), 46.9 and 47.3 (CH α tryptophan), 66.0 (CH₂ Z), 78.8 (C quat. Boc), 110.1 and 110.3 (C₃ tryptophan), 111.7 and 111.8 (C₇ tryptophan), 118.3 and 118.4 (C₄ tryptophan), 188.8 (C₅ tryptophan), 121.3 and 121.3 (C₆ tryptophan), 124.5 and 124.7 (C₂ tryptophan), 127.3 (C₄ Z), 127.5 and 127.6 (C₉ tryptophan), 128.0 (C₂ C₆ 4-chlorobenzyl), 128.2 (C₃ C₅ 4-chlorobenzyl), 128.8 (C₂C₃C₅ C₆ Z), 132.4 (C₄ 4-chlorobenzyl), 136.4 (C₈ tryptophan and C₁ Z), 137.1 (C₁ 4-chlorobenzyl), 155.6 (CO Z), 155.8 and 156.0 (C₃ C₅ triazole), 156.2 (CO Boc). HRMS (ESI) calcd for C₄₂H₄₃ClN₇O₄, 744.3065; found 744.3074.

3.4.20. tert-Butyl (S)-1-(5-((S)-1-Cbz-amino-2-(phenyl)ethyl)-4-(4methoxybenzyl)-4H-1,2,4-triazol-3-yl)-1-(5-Cbz-amino)pentylcarbamate 17i. Colorless oil, 390 mg, 79%, ¹H NMR (300 MHz, DMSO-d₆, 303 K): δ (ppm) 1.14–1.37 (m, 13H, CH₃ Boc and CH₂ $\gamma \delta$ lysine), 1.76 (m, 2H, $CH_2\beta$ lysine), 2.90 (dd, 1H, 7 and 14 Hz, $CH_2 \epsilon$ lysine), 2.97–3.18 (m, 2H, CH₂ β phenylalanine), 3.71 (s, 3H, OMe), 4.64 (m, 1H, CH α lysine), 4.78 (d, 1H, 13 Hz, CH $_2$ Z), 4.89 (m, 2H, CH $_2$ Z and CHα phenylalanine), 5.00 (s, 2H, CH₂ 4-methoxybenzyl), 5.10 (d, 1H, 16 Hz, CH₂ Z), 5.24 (br d, 1H, 18 Hz, CH₂ Z), 6.84 (d, 2H, 8 Hz, H₃H₅ 4methoxybenzyl), 7.00 (m, 3H, H₂H₆ 4-methoxybenzyl), 7.10-7.47 (m, 16 H, C₂C₃C₅C₆ phenylalanine and C₂C₃C₄C₅C₆ Z and NH Boc and NH lysine), 8.08 (d, 1H, 10Hz, NH Z phenylalanine). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 22.7 (CH₂ γ lysine), 27.9 (CH₃ Boc), 28.8 (CH₂ δ lysine), 32.0 (CH₂ β lysine), 38.4 (CH₂ β phenylalanine and CH $_2$ ϵ lysine), 45.5 (CH $_2$ 4-methoxybenzyl), 47.4 (CH α phenylalanine), 55.1 (CHa lysine and OMe), 65.1 and 65.4 (CH₂ Z), 78.2 (C quat. Boc), 114.0 (C₃C₅ 4-methoxybenzyl), 127.65-129.2 (CH Ar. phenylalanine and Z and C₂C₆ 4-methoxybenzyl), 136.7 and 137.3 (C₁ phenylalanine and Z), 155.4 and 155.7 and 156.0 (CO Z and CO Boc and C₄ 4-methoxybenzyl), 158.7 (C₃ and C₅ triazole). HRMS (ESI) calcd for C₄₄H₅₃ClN₆O₇, 777.3976; found 777.3981.

3.4.21. tert-Butyl (S)-1-(5-((S)-(1-Cbz-amino)-(2-((benzyloxy)carbonyl)ethyl))-4-benzyl-4H-1,2,4-triazol-3-yl)pentylcarbamate **17***j*. Colorless oil, 1.0 g, 76% ¹H NMR (400 MHz, DMSO-*d*₆, 303 K): δ (ppm) 0.74 (t, 3H, CH₃ alkyl), 1.10 (m, 4H, CH₂ $\gamma \delta$ norleucine), 1.26 (s, 9H, CH₃ Boc), 1.74 (m, 2H, CH₂ β norleucine), 2.94 (dd, 1H, 8 and 16 Hz, $CH_2\beta$ aspartic acid), 3.13 (dd, 1H, 7 and 16 Hz, $CH_2\beta$ aspartic acid), 4.55 (m, 1H, CHa norleucine), 4.78 (d, 1H, 11 Hz, CH2 benzyl), 4.78 (d, 1H, 11 Hz, CH2 benzyl), 4.89 (d, 1H, 11 Hz, CH2 benzyl), 5.03 (s, 2H, CH₂ benzyl), 5.11 (m, 1H, CHα aspartic acid), 5.20 (d, 1H, 18 Hz, CH₂ benzyl), 5.39 (d, 1H, 17Hz, CH₂ benzyl), 6.98-7.39 (m, 16 H, CH aromatics and NH Boc), 8.01 (d, 1H, 9 Hz, NH Z). ¹³C NMR (100 MHz, DMSO-*d*₆, 303 K): δ (ppm) 13.7 (CH₃ norleucine), 21.4 (CH₂ δ norleucine), 27.5 (CH₂ γ norleucine), 28.0 (CH₃ Boc), 32.3 (CH₂ β norleucine), 37.3 (CH₂ β aspartic acid), 42.8 and 45.0 (CH α norleucine and CHα aspartic acid), 45.7 (CH₂ benzyl), 65.5 (CH₂ Z), 65.6 (CH₂ benzyl), 78.0 (C quat. Boc), 125.0–128.3 (CH aromatics), 135.8 and 135.9 and 136.6 (C1 aromatics), 153.8 (CO Boc), 155.2 and 155.3 (C₃ and C₅ triazole), 156.3 (CO Z), 169.6 (CO Bzl). HRMS (ESI) calcd for C37H46N5O6, 656.3448; found 656.3458.

3.4.22. tert-Butyl (S)-1-(5-((R)-(1-Cbz-amino)-(2-((benzyloxy)carbonyl)ethyl))-4-benzyl-4H-1,2,4-triazol-3-yl)pentylcarbamate **17k.** Colorless oil, 0.84 g, 62% ¹H NMR (400 MHz, DMSO-d₆, 303 K): δ (ppm) 0.71 (t, 3H, 7 Hz, CH₃ norleucine), 1.01–1.11 (m, 4H, CH₂γδ norleucine), 1.31 (s, 9H, CH₃ Boc), 1.69 (m, 2H, CH₂β norleucine), 3.00 (dd, 1H, 7 and 17 Hz, CH₂ β aspartic acid), 3.25 (dd, 1H, 9 and 16 Hz, CH₂β aspartic acid), 4.52 (m, 1H, CHα norleucine), 4.91 (d, 1H, 13 Hz, CH₂ benzyl), 4.97 (d, 1H, 13 Hz, CH₂ benzyl), 5.02 (d, 1H, 13 Hz, CH₂ benzyl), 5.09 (d, 1H, 13 Hz, CH₂ benzyl), 5.16 (m, 1H, CHα aspartic acid), 5.26 (d, 1H, 17 Hz, CH₂ benzyl), 5.32 (d, 1H, 17 Hz, CH₂ benzyl), 7.00 (m, 2H, NH Boc and H₄ benzyl⁴), 7.27–7.35 (m, 13H, CH aromatics benzyl), 7.41 (d, 1H, 9 Hz, NH Z). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 14.2 (CH₃ norleucine), 21.9 (CH₂ δ norleucine), 28.0 (CH₂ γ norleucine), 28.6 (CH₃ Boc), 32.8 (CH₂ β norleucine), 39.4 (CH₂ β aspartic acid), 43.2 and 45.7 (CHα norleucine and CHα aspartic acid), 46.0 (O–*CH*₂–benzyl), 66.0 (CH₂ Z), 66.2 (N–*CH*₂–benzyl), 78.7 (C quat. Boc), 126.5 and 128.0 and 128.3 and 128.8 and 129.1 (CH aromatics), 136.4 and 137.2 (C₁ benzyl), 154.2 (CO Boc), 155.8 and 156.0 (C₃ and C₅ triazole), 156.7 (CO Z), 170.2 (CO benzyl). HRMS (ESI) calcd for $C_{37}H_{46}N_5O_{6}$, 656.3448; found 656.3458.

3.4.23. tert-Butyl (S)-1-(5-((S)-(1-Fmoc-amino)-(2-((tert-butyloxy) carbonyl)ethyl))-4-phenethyl-4H-1,2,4-triazol-3-yl)pentylcarbamate **171.** White powder, 0.61 g, 70% ¹H NMR (400 MHz, DMSO-d₆, 303 K): δ (ppm) 1H NMR, DMSO-d₆, 400 MHz: 0.85 (t, 3H, 7 Hz, CH₃ norleucine), 1.27 (m, 4H, CH₂ $\delta\gamma$ norleucine), 1.31 (s, 9H, CH₃ Boc), 1.36 (s, 9H, CH₃ tert-butyl), 1.66 (m, 1H, CH₂ β norleucine), 1.83 (m, 1H, CH₂ β norleucine), 2.67–3.06 (m, 4H, CH₂ β aspartic acid and CH₂ β phenethyl), 4.14 (m, 3H, CHCH₂ Fmoc), 4.29 (m, 2H, CH₂ α phenethyl), 4.58 (m, 1H, CH α norleucine), 5.10 (m, 1H, CH α aspartic acid), 7.19–7.45 (m, 10H, CH aromtics phenethyl and NH Boc and H₂H₇ and H₃H₆ Fmoc), 7.64 and 7.67 (d, 2H, 7 Hz, H₁H₈ Fmoc), 7.86 (m, 3H, H₄H₅ Fmoc and NH norleucine), 8.19 (d, 1H, 9 Hz, NH Fmoc). HRMS (ESI) calcd for C₄₂H₅₄N₅O₆, 724.4074; found 724.4075.

3.4.24. tert-Butyl (S)-1-(5-((S)-(1-Fmoc-amino)-(3-((tert-butyloxy) carbonyl)propyl))-4-benzyl-4H-1,2,4-triazol-3-yl)pentylcarbamate 17*m*. White powder, 0.67 g, 77% ¹H NMR (400 MHz, DMSO- d_{6} , 303 K): δ (ppm) 0.72 (t, 3H, 7 Hz, CH₃ norleucine), 1.06 (m, 4H, CH₂ γ δ norleucine), 1.26 (s, 9H, CH₃ tert-butyl or Boc), 1.34 (s, 9H, CH₃ tertbutyl or Boc), 1.73 (m, 2H, $CH_2\beta$ norleucine), 2.06 (m, 2H, $CH_2\gamma$ glutamic acid), 2.16 (m, 2H, $CH_2\beta$ glutamic acid), 4.03 (m, 2H, CH_2 Fmoc), 4.17 (dd, 1H, 7 and 9 Hz, CH Fmoc), 4.53 (m, 1H, CHa norleucine), 4.72 (m, 1H, CHa glutamic acid), 5.18 (d, 1H, 17 Hz, CH₂ benzyl), 5.36 (d, 1H, 17 Hz, CH₂ benzyl), 7.00 (d, 2H, H₃H₅ benzyl), 7.20 (m, 3H, H₂H₄H₆ benzyl), 7.30 (m, 2H, H₂H₇ Fmoc), 7.66 (t, 2H, 8 Hz, H₁H₈ Fmoc), 7.88 (d, 2H, 8 Hz, H₄H₅ Fmoc), 8.03 (d, 1H, 9 Hz, NH Fmoc). ¹³C NMR (75 MHz, DMSO- d_6 , 303 K): δ (ppm) 13.8 (CH₃ norleucine), 21.5 (CH₂ δ norleucine), 27.6 (CH₂ γ norleucine), 27.7 (CH₃ Boc or CH₃ tert-butyl), 28.0 (CH₃ Boc and CH₃ tert-butyl), 28.2 $(CH_2\delta$ glutamic acid), 31.3 $(CH_2\beta$ glutamic acid), 32.3 $(CH_2\beta$ norleucine), 45.0 (CHa norleucine and CHa glutamic acid), 45.7 (CH₂ benzyl), 46.5 (CH Fmoc), 65.72 (CH₂ Fmoc), 78.1 and 78.7 (C quat. Boc and tert-butyl), 120.1 (C1C8 Fmoc and C4C5 Fmoc), 126.1 (C2C7 Fmoc), 127.0 (C₃C₆ Fmoc and C₄ benzyl), 127.6 (C₃C₅ benzyl), 128.4 (C₂C₆ benzyl), 136.1 (C₁ benzyl), 140.7 (C_{4a/b} Fmoc), 143.6 and 143.7 (C8a/b Fmoc), 154.7 and 155.7 (C3C5 triazole), 155.2 and 155.9 (CO Boc and CO Fmoc), 171.4 (CO ester). HRMS (ESI) calcd for C₄₂H₅₄N₅O₆, 724.4074; found 724.4064.

3.4.25. tert-Butyl (S)-1-(5-((S)-(1-Cbz-amino)-(2-((benzyloxy)carbonyl)ethyl))-4-pentyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethylcarbamate 17n. White powder, 0.61 g, 33% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 0.75 (br s, 3H, CH₃ alkyl), 1.08 (m, 4H, CH₂ $\gamma \delta$ alkyl), 1.28 (s, 9H, CH₃ Boc), 1.35 (m, 2H, CH₂ β alkyl), 3.01 (dd, 1H, 6 and 10 Hz, $CH_2\beta$ aspartic acid), 3.26 (m, 2H, CH α alkyl), 3.39 (m, 1H, $CH_2\beta$ aspartic acid), 3.81 (m, 2H, $CH_2\beta$ tryptophan), 4.96–5.10 (m, 5H, CH₂ benzyl and CH₂ Z and CH α tryptophan), 5.20 (m, 1H, CH α aspartic acid), 6.97 (t, 1H, 7 Hz, H₅ tryptophan), 7.02 (m, 1H, H₆ tryptophan), 7.07 (s, 1H, H₂ tryptophan), 7.32 (m, 11H, CH aromatics benzyl and H₇ tryptophan), 7.53 (t, 2H, H₄ tryptophan and NH Z), 8.00 (d, 1H, NH Boc), 10.76 (s, 1H, NH indole). ¹³C NMR (75 MHz, DMSO- d_6 , 303 K): δ (ppm) 13.6 (CH₃ alkyl), 21.5 (CH₂ δ alkyl), 28.0 (CH₃ Boc), 28.2 (CH₂ γ alkyl), 29.2 (CH₂ β tryptophan), 29.6 (CH₂ β alkyl), 37.7 (CH₂ α alkyl), 38.7 (CH₂ β aspartic acid), 42.6 (CHa aspartic acid), 46.2 (CHa tryptophan), 65.6 and 65.7 (CH₂ Z and CH₂ benzyl), 78.1 (C quat. Boc), 110.2 (C₃ tryptophan), 111.2 (C₇ tryptophan), 118.2 (C₄ tryptophan and C₅ tryptophan), 120.8 (C₆ tryptophan), 127.2 (C₉ tryptophan and C₄ benzyl and C₄ Z), 127.6–128.3 ($C_2 C_3 C_5 C_6 Z$ and $C_2 C_3 C_5 C_6$ benzyl), 135.8 and 136.0 (C_1 benzyl and Z), 136.7 (C_8 tryptophan), 153.2 (CO Boc and CO Z), 155.1 and 155.4 ($C_3 C_5$ triazole), 169.7 (CO ester). HRMS (ESI) calcd for $C_{40}H_{49}N_6O_6$, 709.3714; found 709.3704.

3.4.26. tert-Butyl (S)-1-(5-((S)-(1-Fmoc-amino)-(2-((tert-butyloxy) carbonvl)ethvl))-4-benzvl-4H-1.2.4-triazol-3-vl)pentvlcarbamate **170**. White powder, 0.54 g, 84% ¹H NMR (400 MHz, DMSO- d_6 , 303 K): δ (ppm) ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 0.87 (t, 3H, 7 Hz, CH₃ norleucine), 1.21 (t, 3H, 7 Hz, CH₃ ester), 1.25-1.34 (m, 4H, CH₂γδ norleucine), 1.37 (s, 9H, CH₃ Boc), 1.64 (s, 3H, CH₃ acetyl), 1.91 (m, 2H, CH₂β norleucine), 3.19 (dd, 1H, 10 and 14 Hz, $CH_2\beta$ phenylalanine), 3.26 (dd, 1H, 5 and 14 Hz, $CH_2\beta$ phenylalanine), 4.11 (m, 2H, CH₂ ester), 4.58 (m, 1H, CHα norleucine), 4.87 (d, 1H, 18 Hz, CH₂ glycine), 4.94 (d, 1H, 18 Hz, CH₂ glycine), 5.16 (m, 1H, CH α phenylalanine), 7.18 (m,1H, H₄ phenylalanine), 7.27 (m, 4H, H₂H₃H₅H₆ phenylalanine), 7.40 (d, 1H, 9 Hz, NH Boc), 8.53 (d, 1H, 9 Hz, NH acetyl). ¹³C NMR (75 MHz, DMSO-*d*₆, 303 K): δ (ppm) 14.4 (CH₃ norleucine and CH₃ ester), 22.2 (CH₂ δ norleucine), 22.4 (CH₃ acetyl), 28.2 (CH₂γ norleucine), 28.6 (CH₃ Boc), 32.4 (CH₂β norleucine), 38.5 (CH₂β phenylalanine), 44.5 (CH₂ glycine), 44.8 (CHα phenylalanine), 45.4 (CHa norleucine), 61.9 (CH₂ ester), 78.8 (C quat Boc), 126.8 (C₄ phenylalanine), 128.5 (C₂C₆ phenylalanine), 129.7 (C₃C₅ phenylalanine), 138.4 (C₁ phenylalanine), 155.7 and 156.0 (C₃ and C₅ triazole and CO Boc), 167.9 (CO ester), 169.3 (CO acetyl). HRMS (ESI) calcd for C₂₆H₄₀N₅O₅, 502.3029; found 502.3034.

3.4.27. tert-Butvl (S)-1-(4-((ethoxvcarbonvl)methvl)-5-((S)-1-acetamido-2-phenvlethvl)-4H-1.2.4-triazol-3-vl)pentvlcarbamate **17p**. White powder, 0.58 g, 77% ¹H NMR (300 MHz, DMSO- d_6 , 303 K): δ (ppm) 0.81 (t, 3H, 13 Hz, CH₃ norleucine), 1.14 (t, 3H, 7 Hz, CH₃ ester), 1.23 (m, 4H, CH₂ $\gamma \delta$ norleucine), 1.32 (s, 9H, CH₃ Boc), 1.62 (s, 3H, CH₃ acetyl), 1.81 (m, 2H, CH₂ β norleucine), 3.17 (m, 2H, CH₂ β phenylalanine), 4.06 (q, 2H, 8 Hz, CH₂ ester), 4.56 (dd, 8 and 15 Hz, CHα norleucine), 4.84 (d, 1H, 19 Hz, CH₂ glycine), 4.96 (d, 1H, 1H, 18 Hz, CH₂ glycine), 5.08 (m, 1H, CHα phenylalanine), 7.11–7.29 (m, 8H, NH Boc and CH aromatics), 8.47 (d, 1H, 9Hz, NH acetyl). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 14.2 (CH₃ norleucine and CH₃ ester), 22.1 (CH₂ γ norleucine), 22.4 (CH₃ acetyl), 28.0 (CH₂ δ norleucine), 28.5 (CH₃ Boc), 32.6 (CH₂ β norleucine), 38.6 (CH₂ β phenylalanine), 44.4 (CH₂ glycine), 44.8 (CHa norleucine), 45.7 (CHa phenylalanine), 61.8 (CH₂ ester), 78.6 (C quat. Boc), 126.7 (C₄ phenylalanine), 128.4 (C₂ and C₆ phenylalanine), 129.6 (C₃ and C₅ phenylalanine), 138.2 (C₁ phenylalanine), 155.6 (C₃ and C₅ triazole and CO Boc), 167.6 (CO ester), 169.3 (CO acetyl). MS (ES), HRMS (ESI) calcd for C₂₆H₄₀N₅O₅, 502.3029; found: 502.3029.

3.4.28. tert-Butyl (S)-1-(4-((ethoxycarbonyl)methyl)-5-((R)-1acetamido-2-phenylethyl)-4H-1,2,4-triazol-3-yl)pentylcarbamate **17q.** Colorless solid, 0.80 g, 60% ¹H NMR (300 MHz, DMSO-d₆, 303 K): δ (ppm) 0.72 (t, 3H, 7 Hz, CH₃ norleucine), 1.06 (m, 4H, CH₂ $\delta\gamma$ norleucine), 1.27 (s, 9H, CH₃ Boc or CH₃ *t*-Bu), 1.29 (s, 9H, CH₃ Boc or CH₃ *t*-Bu), 1.71 (m, 2H, CH₂ β norleucine), 2.78 (m, 1H, 7 and 16 Hz, CH₂ β aspartic acid), 2.87 (m, 1H, 8 and 15 Hz, CH₂ β aspartic acid), 4.00 (m, 2H, CH₂ Fmoc), 4.14 (dd, 1H, 6 and 9 Hz, CH Fmoc), 4.54 (m, 1H, CH α norleucine), 5.07 (m, 1H, CH α aspartic acid), 5.23 (d, 1H, 17 Hz, CH₂ benzyl), 5.41 (d, 1H, 17 Hz, CH₂ benzyl), 7.01 (d, 2H, 7 Hz, H₃H₅ benzyl), 7.21 (m, 3H, H₂H₄H₆ benzyl), 7.30 (m, 2H, H₂H₇ Fmoc), 7.41 (td, 3H, 1 and 8 Hz, H₃ H₆ Fmoc and NH Boc), 7.61 (m, 2H, H₁H₈ Fmoc), 7.87 (d, 2H, 8 Hz, H₄H₅ Fmoc), 8.08 (d, 1H, 9 Hz, NH Fmoc). ¹³C NMR (75 MHz, DMSO-*d*₆, 303 K): δ (ppm) 13.7 (CH₃ norleucine), 21.4 (CH₂δ norleucine), 27.5 (CH₃ Boc and CH₂ γ norleucine), 28.0 (CH₃ *tert*-butyl), 32.1 (CH₂β norleucine), 42.7 (CH₂β aspartic acid), 45.0 (CHα norleucine), 45.9 (CHα aspartic acid), 46.4 (CH Fmoc and CH₂ benzyl), 65.8 (CH₂ Fmoc), 78.1 (C quat Boc), 80.1 (C quat *tert*-butyl), 120.0 (C₄C₅ Fmoc), 125.2 (C₁C₈ Fmoc), 126.1 (C₂C₇ Fmoc), 127.0 (C₂C₆ benzyl), 127.3 (C₄ benzyl), 127.6 (C₃C₅ benzyl), 128.4 (C₃C₆ Fmoc), 135.7 (C₁ benzyl), 140.6 (C₄ a/b Fmoc), 143.6 (C₈ a/b Fmoc), 154.0 and 155.3 (C₃ and C₅ triazole and CO Boc), 156.3 (CO Fmoc), 168.6 (CO aspartic acid). MS (ES), *m/z*: 710.2 [M+H]⁺.

3.4.29. tert-Butyl (S)-1-(4-((S)-1-(methoxycarbonyl)ethyl)-5-((S)-1-Boc-amino-2-phenylethyl)-4H-1,2,4-triazol-3-yl)-2-phenylethylcarba mate **20**. White powder, 0.09 g, 28% ¹H NMR (300 MHz, DMSO-d₆, 303 K): δ (ppm) 1.22 (s, 18H, CH₃ Boc), 1.62 (d, 3H, 7Hz, CH₃ β alanine), 3.20 (d, 4H, 7Hz, CH₂ β phenylalanine), 3.65 (s, 3H, O–Me alanine), 4.87 (m, 2H, CH α phenylalanine), 5.61 (m, 1H, CH α alanine), 7.18–7.27 (m, 10H, CH Ar.), 7.52 (d, 2H, 9 Hz, NH Boc). ¹³C NMR (75 MHz, DMSO-d₆, 303 K): δ (ppm) 16.7 (CH₃ β alanine), 27.9 (CH₃ Boc), 38.7 (CH₂ β phenylalanine), 47.1 (CH α alanine), 51.9 (O–Me alanine), 52.9 (CH α phenylalanine), 78.2 (C quaternaire Boc), 126.2 (C₄ phenylalanine), 128.0 (C₂ C₆ phenylalanine), 129.3 (C₃ C₅ phenylalanine), 137.8 (C₁ phenylalanine), 154.9 (C₃ and C₅ triazole), 155.0 (CO Boc), 170.0 (CO ester). HRMS (ESI) calcd for C₃₂H₄₄N₅O₆, 594.3292; found 594.3282.

Acknowledgements

The authors like to thank Dr. O. Bruguier from UMR Géosciences (University Montpellier 2, France) for ICPMS analysis and Dr. P. Chevallet for his invaluable help in nomenclature determination.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2011.07.011.

References and notes

- 1. Bibian, M.; Blayo, A.-L.; Moulin, A.; Martinez, J.; Fehrentz, J.-A. *Tetrahedron Lett.* **2010**, *51*, 2660–2663.
- Moulin, A.; Demange, L.; Ryan, J.; Mousseaux, D.; Sanchez, P.; Bergé, G.; Gagne, D.; Perrissoud, D.; Locatelli, V.; Torsello, A.; Galleyrand, J.-C.; Fehrentz, J.-A.; Martinez, J. J. Med. Chem. 2008, 51, 689–693.
- Bibian, M.; El-Habnouni, S.; Martinez, J.; Fehrentz, J. A. Synthesis 2009, 1180–1184.
- (a) Clausen, K.; Thorsen, M.; Lawesson, S. O. *Tetrahedron* 1981, 37, 3635–3639;
 (b) Boeglin, D.; Cantel, S.; Heitz, A.; Martinez, J.; Fehrentz, J.-A. *Org. Lett.* 2003, 5, 4465–4468.
- Avalos, M.; Babiano, R.; Cintas, P.; Duran, C. J.; Higes, F. J.; Jimenez, J. L.; Lopez, I.; Palacios, J. C. *Tetrahedron* 1997, 53, 14463–14480.